Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.more » « less
-
Abstract Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface‐based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto‐fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose‐responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non‐patterned substrates. Two‐photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto‐fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.more » « less
-
ABSTRACT The stability of nonpatterned and nanopatterned strong polyelectrolyte brushes (PEBs) is studied as a function of both brush character and the properties of a contacting liquid. High‐molecular‐weight PEBs of poly(4‐methyl vinylpyridinium iodide) (PMeVP) are synthesized using surface‐initiated radical‐chain polymerization. Nanopatterned brushes (NPBs) line with pattern sizes ranging from 50 to 200 nm are generated by patterning the initiator layer using deep‐ultraviolet photolithography followed by brush growth initiated from the patterned layer. Homogeneous PEBs with different degrees of charging and grafting densities are exposed to water and salt solutions with different temperatures for different periods. The degradation is monitored through dry‐state ellipsometry and atomic force microscopy measurements. Enhanced degrafting for more strongly swollen polymer brushes can be observed in agreement with an “entropic spring” model. Based on the results of the nonpatterned brushes, the NPBs are exposed to water at different temperatures and external salt content for varying periods of time. Counterintuitively, the NPBs show increased degrafting for smaller patterns, which is attributed to different polymer chain dynamics for nanobrushes and microbrushes. We investigate the influence of thermodynamic and kinetic parameters on the stability of (nanopatterned) PEBs and discuss the role of entanglements and formation of complexes in such films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1283–1295more » « less
An official website of the United States government
